Regular Expressions
Definitions
	Literal
	A literal is any character we use in a search or matching expression, for example, to find ind in windows the ind is a literalstring - each character plays a part in the search, it is literally the string we want to find.

	metacharacter
	A metacharacter is one or more special characters that have a unique meaning and are NOT used as literals in the search expression, for example, the character ^ (circumflex or caret) is a metacharacter.

	target string
	This term describes the string that we will be searching, that is, the string in which we want to find our match or search pattern.

	search expression
	Most commonly called the regular expression. This term describes the search expression that we will be using to search our target string, that is, the pattern we use to find what we want.

	escape sequence
	An escape sequence is a way of indicating that we want to use one of our metacharacters as a literal. In a regular expression an escape sequence involves placing the metacharacter \ (backslash) in front of the metacharacter that we want to use as a literal, for example, if we want to find (s) in the target string window(s) then we use the search expression \(s\) and if we want to find \\file in the target string c:\\file then we would need to use the search expression \\\\file (each \ we want to search for as a literal (there are 2) is preceded by an escape sequence \).

STRING1 Mozilla/4.0 (compatible; MSIE 5.0; Windows NT; DigExt)
STRING2 Mozilla/4.75 [en](X11;U;Linux2.2.16-22 i586)
Simple Matching
	Search for
(search expression)
	
	
	

	M
	STRING1
	match
	Finds the m in compatible

	
	STRING2
	no match
	There is no lower case m in this string. Searches are case sensitive unless you take special action.

	a/4
	STRING1
	match
	Found in Mozilla/4.0 - any combination of characters can be used for the match

	
	STRING2
	match
	Found in same place as in STRING1

	le
	STRING1
	match
	found in compatible

	
	STRING2
	no match
	There is an l and an e in this string but they are not adjacent (or contiguous).

Brackets, Ranges and Negation
Bracket expressions introduce our first metacharacters, in this case the square brackets which allow us to define list of things to test for rather than the single characters we have been checking up until now. These lists can be grouped into what are known as Character Classes typically comprising well know groups such as all numbers etc.
	Metacharacter
	Meaning

	[]
	Match anything inside the square brackets for ONE character position once and only once, for example, [12] means match the target to 1 and if that does not match then match the target to 2 while [0123456789] means match to any character in the range 0 to 9.

	-
	The - (dash) inside square brackets is the 'range separator' and allows us to define a range, in our example above of [0123456789] we could rewrite it as [0-9].
You can define more than one range inside a list, for example, [0-9A-C] means check for 0 to 9 and A to C (but not a to c).
NOTE: To test for - inside brackets (as a literal) it must come first or last, that is, [-0-9] will test for - and 0 to 9.

	^
	The ^ (circumflex or caret) inside square brackets negates the expression (we will see an alternate use for the circumflex/caretoutside square brackets later), for example, [^Ff] means anything except upper or lower case F and [^a-z] means everything except lower case a to z.

So let’s try this new stuff with our target strings.
	Search for
(search expression)
	
	
	

	in[du]
	STRING1
	match
	finds ind in Windows

	
	STRING2
	match
	finds inu in Linux

	x[0-9A-Z]
	STRING1
	no match
	Again the tests are case sensitive to find the xt in DigExt we would need to use [0-9a-z] or [0-9A-Zt]. We can also use this format for testing upper and lower case e.g. [Ff] will check for lower and upper case F.

	
	STRING2
	match
	Finds x2 in Linux2

	[^A-M]in
	STRING1
	match
	Finds Win in Windows

	
	STRING2
	no match
	We have excluded the range A to M in our search so Linux is not found but linux (if it were present) would be found.

Positioning (or Anchors)
We can control where in our target strings the matches are valid. The following is a list of metacharacters that affect the position of the search:
	Metacharacter
	Meaning

	^
	The ^ (circumflex or caret) outside square brackets means look only at the beginning of the target string, for example, ^Winwill not find Windows in STRING1 but ^Moz will find Mozilla.

	$
	The $ (dollar) means look only at the end of the target string, for example, fox$ will find a match in 'silver fox' since it appears at the end of the string but not in 'the fox jumped over the moon'.

	.
	The . (period) means any character(s) in this position, for example, ton. will find tons, tone and tonneau but not wantonbecause it has no following character.

So lets try this lot out with our example target strings..
	Search for
(search expression)
	
	
	

	[a-z]\)$
	STRING1
	match
	finds t) in DigiExt) Note: The \ is an escape character and is required to treat the) as a literal

	
	STRING2
	no match
	We have a numeric value at the end of this string but we would need [0-9a-z]) to find it.

	.in
	STRING1
	match
	Finds Win in Windows.

	
	
	STRING2
	match
	Finds Lin in Linux.

Iteration 'metacharacters'
The following is a set of iteration metacharacters (a.k.a. quantifiers) that can control the number of times the preceding character is found in our searches. The iteration meta characters can also be used in conjunction with parenthesis meta characters.
	Metacharacter
	Meaning

	?
	The ? (question mark) matches when the preceding character occurs 0 or 1 times only, for example, colou?r will find both color (u is found 0 times) and colour (u is found 1 time).

	*
	The * (asterisk or star) matches when the preceding character occurs 0 or more times, for example, tre* will find tree (e is found 2 times) and tread (e is found 1 time) and trough (e is found 0 times).

	+
	The + (plus) matches when the preceding character occurs 1 or more times, for example, tre+ will find tree (e is found 2 times) and tread (e is found 1 time) but NOT trough (0 times).

	[bookmark: _GoBack]{n,m}
	Matches when the preceding character occurs at least n times but not more than m times, for example, 'ba{2,3}b' will find 'baab' and 'baaab' but NOT 'bab' or 'baaaab'. Values are enclosed in braces (curly brackets).

	{n,}
	Matches when the preceding character occurs at least n times, for example, 'ba{2,}b' will find 'baab', 'baaab' or 'baaaab' but NOT 'bab'. Values are enclosed in braces (curly brackets).

So lets try them out with our example target strings.
	Search for
(search expression)
	
	
	

	\(.*l
	STRING1
	match
	finds the (and l in (compatible. The opening \ is an escape character used to indicate the (it precedes is a literal (search character) not a metacharacter.

	
	STRING2
	no match
	Mozilla contains lls but not preceded by an open parenthesis (no match) and Linux has an upper case L (no match).

	W*in
	STRING1
	match
	Finds the Win in Windows.

	
	STRING2
	match
	Finds in in Linux preceded by W zero times - so a match.

	[xX][0-9a-z]{2}
	STRING1
	no match
	Finds x in DigExt but only one t.

	
	STRING2
	match
	Finds X and 11 in X11.

